Tan x'in türevi 1+tan² x'tir.
Tan x'in Türevi Nedir ? Tan x'in türevi 1+tan² x'tir.
( t an x ) ā² = 1 + t a n 2 x
d x d ā ( t an x ) = 1 + t a n 2 x
Tan x'in Türevinin İspatı 1. Yol f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā ( t an x ) ā² = h ā 0 lim ā h t an ( x + h ) ā t an x ā
t an ( p + q ) = 1 ā t an p . t an q t an p + t an q ā ā
( t an x ) ā² = h ā 0 lim ā h 1 ā t an x . t an h t an x + t an h ā ā t an x ā
( t an x ) ā² = h ā 0 lim ā h 1 ā t an x . t an h t an x + t an h ā t an x . ( 1 ā t an x . t an h ) ā ā
( t an x ) ā² = h ā 0 lim ā h 1 ā t an x . t an h t an x + t an h ā t an x + t a n 2 x . t an h ā ā
( t an x ) ā² = h ā 0 lim ā h 1 ā t an x . t an h t an h + t a n 2 x . t an h ā ā
( t an x ) ā² = h ā 0 lim ā h 1 ā t an x . t an h t an h . ( 1 + t a n 2 x ) ā ā
( t an x ) ā² = h ā 0 lim ā [ h 1 ā . 1 ā t an x . t an h t an h . ( 1 + t a n 2 x ) ā ]
( t an x ) ā² = h ā 0 lim ā h . ( 1 ā t an x . t an h ) t an h . ( 1 + t a n 2 x ) ā
( t an x ) ā² = h ā 0 lim ā ( h t an h ā . 1 ā t an x . t an h 1 + t a n 2 x ā )
( t an x ) ā² = h ā 0 lim ā h t an h ā . h ā 0 lim ā 1 ā t an x . t an h 1 + t a n 2 x ā
t ā 0 l i m ā t t an t ā = 1 ā
( t an x ) ā² = 1. 1 ā t an x . t an 0 1 + t a n 2 x ā
( t an x ) ā² = 1 ā t an x . t an 0 1 + t a n 2 x ā
t an 0 = 0 ā
( t an x ) ā² = 1 ā t an x .0 1 + t a n 2 x ā
( t an x ) ā² = 1 ā 0 1 + t a n 2 x ā
( t an x ) ā² = 1 1 + t a n 2 x ā
( t an x ) ā² = 1 + t a n 2 x
2. Yol f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā ( t an x ) ā² = h ā 0 lim ā h t an ( x + h ) ā t an x ā
t an x = cos x s in x ā ā
( t an x ) ā² = h ā 0 lim ā h cos ( x + h ) s in ( x + h ) ā ā cos x s in x ā ā
( t an x ) ā² = h ā 0 lim ā h cos x . cos ( x + h ) s in ( x + h ) . cos x ā cos ( x + h ) . s in x ā ā
s in p . cos q ā cos p . s in q = s in ( p ā q ) ā
( t an x ) ā² = h ā 0 lim ā h cos x . cos ( x + h ) s in ( x ā + h ā x ā ) ā ā
( t an x ) ā² = h ā 0 lim ā h cos x . cos ( x + h ) s in h ā ā
( t an x ) ā² = h ā 0 lim ā [ h 1 ā . cos x . cos ( x + h ) s in h ā ]
( t an x ) ā² = h ā 0 lim ā h . cos x . cos ( x + h ) s in h ā
( t an x ) ā² = h ā 0 lim ā [ h s in h ā . cos x . cos ( x + h ) 1 ā ]
( t an x ) ā² = h ā 0 lim ā h s in h ā . h ā 0 lim ā cos x . cos ( x + h ) 1 ā
t ā 0 l i m ā t s in t ā = 1 ā
( t an x ) ā² = 1. cos x . cos ( x + 0 ) 1 ā
( t an x ) ā² = cos x . cos ( x + 0 ) 1 ā
( t an x ) ā² = cos x . cos x 1 ā
( t an x ) ā² = co s 2 x 1 ā
3. Yol t an x = cos x s in x ā
( t an x ) ā² = ( cos x s in x ā ) ā²
( v u ā ) ā² = v 2 u ā² . v ā v ā² . u ā ā
( t an x ) ā² = co s 2 x ( s in x ) ā² . cos x ā ( cos x ) ā² . s in x ā
( s in x ) ā² = cos x ā ( cos x ) ā² = ā s in x ā
( t an x ) ā² = co s 2 x cos x . cos x ā ( ā s in x ) . s in x ā
( t an x ) ā² = co s 2 x co s 2 x + s i n 2 x ā
co s 2 x + s i n 2 x = 1 ā
( t an x ) ā² = co s 2 x 1 ā
co s 2 x 1 ā = ( cos x 1 ā ) 2
( t an x ) ā² = ( cos x 1 ā ) 2
cos x 1 ā = sec x ā
( t an x ) ā² = se c 2 x
( t an x ) ā² = 1 + t a n 2 x = co s 2 x 1 ā = se c 2 x ā