Sin u'nun türevi u'.cos u'dur.
Sin u'nun Türevi Nedir ? Sin u'nun türevi u'.cos u'dur. 
( s in   u ) ′ = u ′ . cos   u 
d x d  ( s in   u ) = u ′ . cos   u 
Sin u'nun Türevinin İspatı 1. Yol f ′   ( x ) = h → 0 lim  h f   ( x + h ) − f   ( x )  [ s in   u ( x ) ] ′ = h → 0 lim  h s in   u ( x + h ) − s in   u ( x )  
s in   p − s in   q = 2. s in   2 p − q  . cos   2 p + q   [ s in   u ( x ) ] ′ = h → 0 lim  h 2. s in   2 u ( x + h ) − u ( x )  . cos   2 u ( x + h ) + u ( x )   [ s in   u ( x ) ] ′ = h → 0 lim  h . 2 1  s in   2 u ( x + h ) − u ( x )  . cos   2 u ( x + h ) + u ( x )   [ s in   u ( x ) ] ′ = h → 0 lim  h . 2 1  . [ u ( x + h ) − u ( x )] [ u ( x + h ) − u ( x )] . s in   2 u ( x + h ) − u ( x )  . cos   2 u ( x + h ) + u ( x )   [ s in   u ( x ) ] ′ = h → 0 lim  h . 2 u ( x + h ) − u ( x )  [ u ( x + h ) − u ( x )] . s in   2 u ( x + h ) − u ( x )  . cos   2 u ( x + h ) + u ( x )   [ s in   u ( x ) ] ′ = h → 0 lim    [ h u ( x + h ) − u ( x )  . 2 u ( x + h ) − u ( x )  s in   2 u ( x + h ) − u ( x )   . cos   2 u ( x + h ) + u ( x )  ] [ s in   u ( x ) ] ′ = h → 0 lim  h u ( x + h ) − u ( x )  . h → 0 lim  2 u ( x + h ) − u ( x )  s in   2 u ( x + h ) − u ( x )   . h → 0 lim  cos   2 u ( x + h ) + u ( x )  h → 0   [ 2 u ( x + h ) − u ( x )  = h ] 
[ s in   u ( x ) ] ′ = h → 0 lim  h u ( x + h ) − u ( x )  . h → 0 lim  h s in   h  . h → 0 lim  cos   2 u ( x + h ) + u ( x )  
t → 0 l i m  t s in   t  = 1    
[ s in   u ( x ) ] ′ = u ′ ( x ) .1. cos   2 u ( x + 0 ) + u ( x )  
[ s in   u ( x ) ] ′ = u ′ ( x ) .1. cos   2 u ( x ) + u ( x )  
[ s in   u ( x ) ] ′ = u ′ ( x ) .1. cos   2  2  . u ( x )  
[ s in   u ( x ) ] ′ = u ′ ( x ) .1. cos   u ( x ) 
[ s in   u ( x ) ] ′ = u ′ ( x ) . cos   u ( x ) 
u ( x ) = u 
u ′ ( x ) = u ′ 
( s in   u ) ′ = u ′ . cos   u 
2. Yol s in   u ( x ) = u ( x ) − 3 ! [ u ( x ) ] 3  + 5 ! [ u ( x ) ] 5  − 7 ! [ u ( x ) ] 7  + 9 ! [ u ( x ) ] 9  − ...  
cos   u ( x ) = 1 − 2 ! [ u ( x ) ] 2  + 4 ! [ u ( x ) ] 4  − 6 ! [ u ( x ) ] 6  + 8 ! [ u ( x ) ] 8  − ...  
u ( x ) = u 
u ′ ( x ) = u ′ 
s in   u = u − 3 ! u 3  + 5 ! u 5  − 7 ! u 7  + 9 ! u 9  − ... 
( s in   u ) ′ = ( u − 3 ! u 3  + 5 ! u 5  − 7 ! u 7  + 9 ! u 9  − ... ) ′ 
( s in   u ) ′ = u ′ − ( 3 ! u 3  ) ′ + ( 5 ! u 5  ) ′ − ( 7 ! u 7  ) ′ + ( 9 ! u 9  ) ′ − ... 
( s in   u ) ′ = u ′ − 3 ! ( u 3 ) ′  + 5 ! ( u 5 ) ′  − 7 ! ( u 7 ) ′  + 9 ! ( u 9 ) ′  − ... 
( s in   u ) ′ = u ′ − 3 ! 3. u 2 . u ′  + 5 ! 5. u 4 . u ′  − 7 ! 7. u 6 . u ′  + 9 ! 9. u 8 . u ′  − ... 
( s in   u ) ′ = u ′ − 3  .2 ! 3  . u 2 . u ′  + 5  .4 ! 5  . u 4 . u ′  − 7  .6 ! 7  . u 6 . u ′  + 9  .8 ! 9  . u 8 . u ′  − ... 
( s in   u ) ′ = u ′ − 2 ! u 2 . u ′  + 4 ! u 4 . u ′  − 6 ! u 6 . u ′  + 8 ! u 8 . u ′  − ... 
( s in   u ) ′ = u ′ . ( 1 − 2 ! u 2  + 4 ! u 4  − 6 ! u 6  + 8 ! u 8  − ... ) 
( s in   u ) ′ = u ′ . cos   u 
Soru f ( x ) = s in   ( x 2 − 5 x + 3 ) ⇒ f ′ ( x ) =   ? 
Cevap ( s in   u ) ′ = u ′ . cos   u 
[ s in   ( x 2 − 5 x + 3 ) ] ′ = ( x 2 − 5 x + 3 ) ′ . cos   ( x 2 − 5 x + 3 ) 
[ s in   ( x 2 − 5 x + 3 ) ] ′ = ( 2 x − 5 ) . cos   ( x 2 − 5 x + 3 )