Sin ax'in türevi a.cos ax'tir.
Sin ax'in Türevi Nedir ? Sin ax'in türevi a.cos ax'tir.
( s in a x ) ′ = a . cos a x
d x d ( s in a x ) = a . cos a x
Sin ax'in Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( s in a x ) ′ = h → 0 lim h s in a ( x + h ) − s in a x ( s in a x ) ′ = h → 0 lim h s in ( a x + ah ) − s in a x s in ( p + q ) = s in p . cos q + cos p . s in q ( s in a x ) ′ = h → 0 lim h s in a x . cos ah + cos a x . s in ah − s in a x ( s in a x ) ′ = h → 0 lim h s in a x . cos ah − s in a x + cos a x . s in ah ( s in a x ) ′ = h → 0 lim h s in a x . ( cos ah − 1 ) + cos a x . s in ah ( s in a x ) ′ = h → 0 lim a . h a . [ s in a x . ( cos ah − 1 ) + cos a x . s in ah ] ( s in a x ) ′ = a . h → 0 lim ah s in a x . ( cos ah − 1 ) + cos a x . s in ah ( s in a x ) ′ = a . h → 0 lim [ ah s in a x . ( cos ah − 1 ) + ah cos a x . s in ah ] ( s in a x ) ′ = a . h → 0 lim ah s in a x . ( cos ah − 1 ) + a . h → 0 lim ah cos a x . s in ah ( s in a x ) ′ = a . s in a x . h → 0 lim ah cos ah − 1 + a . cos a x . h → 0 lim ah s in ah h → 0 ( ah = h )
( s in a x ) ′ = a . s in a x . h → 0 lim h cos h − 1 + a . cos a x . h → 0 lim h s in h
t → 0 l i m t s in t = 1 t → 0 l i m t cos t − 1 = 0
( s in a x ) ′ = a . s in a x .0 + a . cos a x .1
( s in a x ) ′ = 0 + a . cos a x
( s in a x ) ′ = a . cos a x
2. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( s in a x ) ′ = h → 0 lim h s in a ( x + h ) − s in a x ( s in a x ) ′ = h → 0 lim h s in ( a x + ah ) − s in a x s in p − s in q = 2. s in ( 2 p − q ) . cos ( 2 p + q ) ( s in a x ) ′ = h → 0 lim h 2. s in 2 a x + ah − a x . cos 2 a x + ah + a x ( s in a x ) ′ = h → 0 lim h 2. s in 2 ah . cos 2 2 a x + ah ( s in a x ) ′ = h → 0 lim h 2. s in 2 ah . cos 2 2 . ( a x + 2 ah ) ( s in a x ) ′ = h → 0 lim h 2. s in 2 ah . cos ( a x + 2 ah ) ( s in a x ) ′ = h → 0 lim 2 1 . h s in 2 ah . cos ( a x + 2 ah ) ( s in a x ) ′ = h → 0 lim 2 h s in 2 ah . cos ( a x + 2 ah ) ( s in a x ) ′ = h → 0 lim a . 2 h a . s in 2 ah . cos ( a x + 2 ah ) ( s in a x ) ′ = a . h → 0 lim 2 ah s in 2 ah . cos ( a x + 2 ah ) ( s in a x ) ′ = a . h → 0 lim [ 2 ah s in 2 ah . cos ( a x + 2 ah )] ( s in a x ) ′ = a . h → 0 lim 2 ah s in 2 ah . h → 0 lim cos ( a x + 2 ah ) h → 0 ( 2 ah = h )
( s in a x ) ′ = a . h → 0 lim h s in h . h → 0 lim cos ( a x + h )
( s in a x ) ′ = a .1. cos ( a x + 0 )
( s in a x ) ′ = a .1. cos a x
( s in a x ) ′ = a . cos a x
3. Yol s in a x = a x − 3 ! ( a x ) 3 + 5 ! ( a x ) 5 − 7 ! ( a x ) 7 + 9 ! ( a x ) 9 − ...
cos a x = 1 − 2 ! ( a x ) 2 + 4 ! ( a x ) 4 − 6 ! ( a x ) 6 + 8 ! ( a x ) 8 − ...
s in a x = a x − 3 ! ( a x ) 3 + 5 ! ( a x ) 5 − 7 ! ( a x ) 7 + 9 ! ( a x ) 9 − ...
( s in a x ) ′ = [ a x − 3 ! ( a x ) 3 + 5 ! ( a x ) 5 − 7 ! ( a x ) 7 + 9 ! ( a x ) 9 − ... ] ′
( s in a x ) ′ = ( a x ) ′ − [ 3 ! ( a x ) 3 ] ′ + [ 5 ! ( a x ) 5 ] ′ − [ 7 ! ( a x ) 7 ] ′ + [ 9 ! ( a x ) 9 ] ′ − ...
( s in a x ) ′ = a − 3 ! 3. ( a x ) 2 . ( a x ) ′ + 5 ! 5. ( a x ) 4 . ( a x ) ′ − 7 ! 7. ( a x ) 6 . ( a x ) ′ + 9 ! 9. ( a x ) 8 . ( a x ) ′ − ...
( s in a x ) ′ = a − 3 ! 3. ( a x ) 2 . a + 5 ! 5. ( a x ) 4 . a − 7 ! 7. ( a x ) 6 . a + 9 ! 9. ( a x ) 8 . a − ...
( s in a x ) ′ = a − 3 .2 ! 3 . ( a x ) 2 . a + 5 .4 ! 5 . ( a x ) 4 . a − 7 .6 ! 7 . ( a x ) 6 . a + 9 .8 ! 9 . ( a x ) 8 . a − ...
( s in a x ) ′ = a − 2 ! ( a x ) 2 . a + 4 ! ( a x ) 4 . a − 6 ! ( a x ) 6 . a + 8 ! ( a x ) 8 . a − ...
( s in a x ) ′ = a . [ 1 − 2 ! ( a x ) 2 + 4 ! ( a x ) 4 − 6 ! ( a x ) 6 + 8 ! ( a x ) 8 − ... ]
( s in a x ) ′ = a . cos a x