Sin 2x'in türevi 2.cos 2x'tir.
Sin 2x'in Türevi Nedir ? Sin 2x'in türevi 2.cos 2x'tir. 
( s in   2 x ) ′ = 2. cos   2 x 
d x d  ( s in   2 x ) = 2. cos   2 x 
Sin 2x'in Türevinin İspatı 1. Yol f ′   ( x ) = h → 0 lim  h f   ( x + h ) − f   ( x )  ( s in   2 x ) ′ = h → 0 lim  h s in   2 ( x + h ) − s in   2 x  ( s in   2 x ) ′ = h → 0 lim  h s in   ( 2 x + 2 h ) − s in   2 x  s in   ( p + q ) = s in   p . cos   q + cos   p . s in   q  ( s in   2 x ) ′ = h → 0 lim  h s in   2 x . cos   2 h + cos   2 x . s in   2 h − s in   2 x  ( s in   2 x ) ′ = h → 0 lim  h s in   2 x . cos   2 h − s in   2 x + cos   2 x . s in   2 h  ( s in   2 x ) ′ = h → 0 lim  h s in   2 x . ( cos   2 h − 1 ) + cos   2 x . s in   2 h  ( s in   2 x ) ′ = h → 0 lim  2. h 2. [ s in   2 x . ( cos   2 h − 1 ) + cos   2 x . s in   2 h ]  ( s in   2 x ) ′ = 2. h → 0 lim  2 h s in   2 x . ( cos   2 h − 1 ) + cos   2 x . s in   2 h  ( s in   2 x ) ′ = 2. h → 0 lim    [ 2 h s in   2 x . ( cos   2 h − 1 )  + 2 h cos   2 x . s in   2 h  ] ( s in   2 x ) ′ = 2. h → 0 lim  2 h s in   2 x . ( cos   2 h − 1 )  + 2. h → 0 lim  2 h cos   2 x . s in   2 h  ( s in   2 x ) ′ = 2. s in   2 x . h → 0 lim  2 h cos   2 h − 1  + 2. cos   2 x . h → 0 lim  2 h s in   2 h  
h → 0   ( 2 h = h ) 
( s in   2 x ) ′ = 2. s in   2 x . h → 0 lim  h cos   h − 1  + 2. cos   2 x . h → 0 lim  h s in   h  
t → 0 l i m  t s in   t  = 1    t → 0 l i m  t cos   t − 1  = 0  
( s in   2 x ) ′ = 2. s in   2 x .0 + 2. cos   2 x .1 
( s in   2 x ) ′ = 0 + 2. cos   2 x 
( s in   2 x ) ′ = 2. cos   2 x 
2. Yol f ′   ( x ) = h → 0 lim  h f   ( x + h ) − f   ( x )  ( s in   2 x ) ′ = h → 0 lim  h s in   2 ( x + h ) − s in   2 x  ( s in   2 x ) ′ = h → 0 lim  h s in   ( 2 x + 2 h ) − s in   2 x  s in   p − s in   q = 2. s in   2 p − q  . cos   2 p + q   ( s in   2 x ) ′ = h → 0 lim  h 2. s in   2 2 x + 2 h − 2 x  . cos   2 2 x + 2 h + 2 x   ( s in   2 x ) ′ = h → 0 lim  h 2. s in   2 2 h  . cos   2 4 x + 2 h   ( s in   2 x ) ′ = 2. h → 0 lim  h s in   2 2 h  . cos   2 4 x + 2 h   ( s in   2 x ) ′ = 2. h → 0 lim  h s in   2  2  . h  . cos   2  2  . ( 2 x + h )   ( s in   2 x ) ′ = 2. h → 0 lim  h s in   h . cos   ( 2 x + h )  ( s in   2 x ) ′ = 2. h → 0 lim    [ h s in   h  . cos   ( 2 x + h )] ( s in   2 x ) ′ = 2. h → 0 lim  h s in   h  . h → 0 lim  cos   ( 2 x + h ) ( s in   2 x ) ′ = 2.1. cos   ( 2 x + 0 ) 
( s in   2 x ) ′ = 2.1. cos   2 x 
( s in   2 x ) ′ = 2. cos   2 x 
3. Yol s in   2 x = 2 x − 3 ! ( 2 x ) 3  + 5 ! ( 2 x ) 5  − 7 ! ( 2 x ) 7  + 9 ! ( 2 x ) 9  − ...  
cos   2 x = 1 − 2 ! ( 2 x ) 2  + 4 ! ( 2 x ) 4  − 6 ! ( 2 x ) 6  + 8 ! ( 2 x ) 8  − ...  
s in   2 x = 2 x − 3 ! ( 2 x ) 3  + 5 ! ( 2 x ) 5  − 7 ! ( 2 x ) 7  + 9 ! ( 2 x ) 9  − ... 
( s in   2 x ) ′ = [ 2 x − 3 ! ( 2 x ) 3  + 5 ! ( 2 x ) 5  − 7 ! ( 2 x ) 7  + 9 ! ( 2 x ) 9  − ... ] ′ 
( s in   2 x ) ′ = ( 2 x ) ′ − [ 3 ! ( 2 x ) 3  ] ′ + [ 5 ! ( 2 x ) 5  ] ′ − [ 7 ! ( 2 x ) 7  ] ′ + [ 9 ! ( 2 x ) 9  ] ′ − ... 
( s in   2 x ) ′ = 2 − 3 ! 3. ( 2 x ) 2 . ( 2 x ) ′  + 5 ! 5. ( 2 x ) 4 . ( 2 x ) ′  − 7 ! 7. ( 2 x ) 6 . ( 2 x ) ′  + 9 ! 9. ( 2 x ) 8 . ( 2 x ) ′  − ... 
( s in   2 x ) ′ = 2 − 3 ! 3. ( 2 x ) 2 .2  + 5 ! 5. ( 2 x ) 4 .2  − 7 ! 7. ( 2 x ) 6 .2  + 9 ! 9. ( 2 x ) 8 .2  − ... 
( s in   2 x ) ′ = 2 − 3  .2 ! 3  . ( 2 x ) 2 .2  + 5  .4 ! 5  . ( 2 x ) 4 .2  − 7  .6 ! 7  . ( 2 x ) 6 .2  + 9  .8 ! 9  . ( 2 x ) 8 .2  − ... 
( s in   2 x ) ′ = 2 − 2 ! ( 2 x ) 2 .2  + 4 ! ( 2 x ) 4 .2  − 6 ! ( 2 x ) 6 .2  + 8 ! ( 2 x ) 8 .2  − ... 
( s in   2 x ) ′ = 2. [ 1 − 2 ! ( 2 x ) 2  + 4 ! ( 2 x ) 4  − 6 ! ( 2 x ) 6  + 8 ! ( 2 x ) 8  − ... ] 
( s in   2 x ) ′ = 2. cos   2 x