Sec x'in türevi sec x.tan x'tir.
Sec x'in Türevi Nedir ? Sec x'in türevi sec x.tan x'tir.
( sec x ) ′ = sec x . t an x
d x d ( sec x ) = sec x . t an x
Sec x'in Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( sec x ) ′ = h → 0 lim h sec ( x + h ) − sec x sec x = cos x 1 ( sec x ) ′ = h → 0 lim h cos ( x + h ) 1 − cos x 1 ( sec x ) ′ = h → 0 lim h cos x . cos ( x + h ) cos x − cos ( x + h ) ( sec x ) ′ = h → 0 lim [ h 1 . cos x . cos ( x + h ) cos x − cos ( x + h ) ] ( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) cos x − cos ( x + h ) cos p − cos q = − 2. s in 2 p − q . s in 2 p + q ( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) − 2. s in 2 x − ( x + h ) . s in 2 x + x + h ( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) − 2. s in 2 x − x − h . s in 2 2 x + h ( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) − 2. s in 2 − h . s in 2 2 x + h s in ( − x ) = − s in x
( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) − 2. − s in 2 h . s in 2 2 x + h
( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) 2. s in 2 h . s in 2 2 x + h
( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) 2. s in 2 h . s in 2 2 . ( x + 2 h )
( sec x ) ′ = h → 0 lim h . cos x . cos ( x + h ) 2. s in 2 h . s in ( x + 2 h )
( sec x ) ′ = h → 0 lim 2 1 . h . cos x . cos ( x + h ) s in 2 h . s in ( x + 2 h )
( sec x ) ′ = h → 0 lim 2 h . cos x . cos ( x + h ) s in 2 h . s in ( x + 2 h ) ( sec x ) ′ = h → 0 lim [ 2 h s in 2 h . cos x . cos ( x + h ) s in ( x + 2 h ) ] ( sec x ) ′ = h → 0 lim 2 h s in 2 h . h → 0 lim cos x . cos ( x + h ) s in ( x + 2 h ) h → 0 ( 2 h = h )
( sec x ) ′ = h → 0 lim h s in h . h → 0 lim cos x . cos ( x + h ) s in ( x + h ) t → 0 l i m t s in t = 1 ( sec x ) ′ = 1. cos x . cos ( x + 0 ) s in ( x + 0 ) ( sec x ) ′ = cos x . cos ( x + 0 ) s in ( x + 0 ) ( sec x ) ′ = cos x . cos x s in x ( sec x ) ′ = cos x . cos x 1. s in x ( sec x ) ′ = cos x 1 . cos x s in x cos x 1 = sec x cos x s in x = t an x
( sec x ) ′ = sec x . t an x
2. Yol sec x = cos x 1
( sec x ) ′ = ( cos x 1 ) ′
( v u ) ′ = v 2 u ′ . v − v ′ . u
( sec x ) ′ = co s 2 x ( 1 ) ′ . cos x − ( cos x ) ′ .1
( cos x ) ′ = − s in x
( sec x ) ′ = co s 2 x 0. cos x − ( − s in x ) .1
( sec x ) ′ = co s 2 x 0 + s in x
( sec x ) ′ = co s 2 x s in x
( sec x ) ′ = cos x . cos x 1. s in x
( sec x ) ′ = cos x 1 . cos x s in x ( sec x ) ′ = sec x . t an x
3. Yol sec x = cos x 1
sec x = co s − 1 x
( sec x ) ′ = ( co s − 1 x ) ′
( u n ) ′ = n . u n − 1 . u ′
( sec x ) ′ = − 1. co s − 1 − 1 x . ( cos x ) ′
( sec x ) ′ = − 1. co s − 2 x . − s in x
( sec x ) ′ = co s − 2 x . s in x
( sec x ) ′ = co s 2 x 1 . s in x
( sec x ) ′ = co s 2 x s in x
( sec x ) ′ = cos x . cos x 1. s in x
( sec x ) ′ = cos x 1 . cos x s in x
( sec x ) ′ = sec x . t an x