Sec x'in İntegrali
Pow
Sec x'in integrali ln |sec x+tan x|+c'dir.
Sec x'in İntegrali Nedir ?
Sec x'in integrali ln |sec x+tan x|+c'dir.
ā«sec x dx=ln ā£sec x+tan xā£+c
ā«sec x dx=āln ā£sec xātan xā£+c
ā«sec x dx=21ā.ln ā£1āsin x1+sin xāā£+c
ā«sec x dx=ln ā£tan (4Ļā+2xā)ā£+c
Sec x'in İntegralini Bulma
ā«sec x dx= ?
ā«sec x dx=ā«sec x+tan x(sec x+tan x).sec xā dx
ā«sec x dx=ā«sec x+tan xsec2 x+sec x.tan xā dx
sec x+tan x=u
d(sec x+tan x)=du
(sec x+tan x)ā² dx=du
(sec x)ā² dx+(tan x)ā² dx=du
(sec x)ā²=sec x.tan xā (tan x)ā²=sec2 xā
sec x.tan x dx+sec2 x dx=du
(sec x.tan x+sec2 x) dx=du
ā«sec x dx=ā«uduā
ā«xdxā=ln ā£xā£+cā
ā«sec x dx=ln ā£uā£+c
ā«sec x dx=ln ā£sec x+tan xā£+cā
sec x+tan x=(sec x+tan x1ā)ā1
ā«sec x dx=ln ā£(sec x+tan x1ā)ā1ā£+c
ā«sec x dx=āln ā£sec x+tan x1āā£+c
sec x=cos x1āā tan x=cos xsin xāā
ā«sec x dx=āln ā£cos x1ā+cos xsin xā1āā£+c
ā«sec x dx=āln ā£cos x1+sin xā1āā£+c
ā«sec x dx=āln ā£1+sin xcos xāā£+c
ā«sec x dx=āln ā£cos x.(1+sin x)cos x.cos xāā£+c
ā«sec x dx=āln ā£cos x.(1+sin x)cos2 xāā£+c
cos2 x=1āsin2 xā
ā«sec x dx=āln ā£cos x.(1+sin x)1āsin2 xāā£+c
ā«sec x dx=āln ā£cos x.(1+sin xā)(1āsin x).(1+sin x)āāā£+c
ā«sec x dx=āln ā£cos x1āsin xāā£+c
ā«sec x dx=āln ā£cos x1āācos xsin xāā£+c
ā«sec x dx=āln ā£sec xātan xā£+cā
āln ā£sec xātan xā£=ln ā£(sec xātan x)ā1ā£
ā«sec x dx=ln ā£(sec xātan x)ā1ā£+c
ā«sec x dx=ln ā£sec xātan x1āā£+c
ā«sec x dx=ln ā£cos x1āācos xsin xā1āā£+c
ā«sec x dx=ln ā£cos x1āsin xā1āā£+c
ā«sec x dx=ln ā£1āsin xcos xāā£+c
cos x=1āsin2 xāā
ā«sec x dx=ln ā£1āsin x1āsin2 xāāā£+c
ā«sec x dx=ln ā£(1āsin x)2ā1āsin2 xāāā£+c
ā«sec x dx=ln ā£(1āsin x)21āsin2 xāāā£+c
ā«sec x dx=ln ā£(1āsin x)ā.(1āsin x)(1āsin x)ā.(1+sin x)āāā£+c
ā«sec x dx=ln ā£1āsin x1+sin xāāā£+c
ā«sec x dx=ln ā£(1āsin x1+sin xā)21āā£+c
ā«sec x dx=21ā.ln ā£1āsin x1+sin xāā£+cā
tan 2xā=t
sin 2xā=1+t2ātā
cos 2xā=1+t2ā1ā
sin 2x=2.sin x.cos xā
ā«sec x dx=ln ā£1ā2.sin 2xā.cos 2xā1+2.sin 2xā.cos 2xāāāā£+c
ā«sec x dx=ln ā£1ā2.1+t2ātā.1+t2ā1ā1+2.1+t2ātā.1+t2ā1āāāā£+c
ā«sec x dx=ln ā£1ā1+t2ā.1+t2ā2.t.1ā1+1+t2ā.1+t2ā2.t.1āāāā£+c
ā«sec x dx=ln ā£1ā(1+t2).(1+t2)ā2.tā1+(1+t2).(1+t2)ā2.tāāāā£+c
ā«sec x dx=ln ā£1ā(1+t2)2ā2.tā1+(1+t2)2ā2.tāāāā£+c
ā«sec x dx=ln ā£1ā1+t22.tā1+1+t22.tāāāā£+c
ā«sec x dx=ln ā£1+t21+t2ā2.tā1+t21+t2+2.tāāāā£+c
ā«sec x dx=ln ā£1+t2ā1+t2ā2.tā1+t2ā1+t2+2.tāāāā£+c
ā«sec x dx=ln ā£1+t2ā2.t1+t2+2.tāāā£+c
ā«sec x dx=ln ā£1ā2.t+t21+2.t+t2āāā£+c
ā«sec x dx=ln ā£12ā2.t+t212+2.t+t2āāā£+c
ā«sec x dx=ln ā£(1āt)2(1+t)2āāā£+c
ā«sec x dx=ln ā£(1āt1+tā)2āā£+c
ā«sec x dx=ln ā£1āt1+tāā£+c
ā«sec x dx=ln ā£1ātan 2xā1+tan 2xāāā£+c
ā«sec x dx=ln ā£1ā1.tan 2xā1+tan 2xāāā£+c
1=tan 4Ļāā
ā«sec x dx=ln ā£1ātan 4Ļā.tan 2xātan 4Ļā+tan 2xāāā£+c
1ātan p.tan qtan p+tan qā=tan (p+q)ā
ā«sec x dx=ln ā£tan (4Ļā+2xā)ā£+cā
Share Your Expertise, Earn Rewards!
Found this insightful? Imagine your knowledge generating income. Contribute your articles to bylge.com and connect with readers while unlocking your earning potential.