√u'nun türevi u'/(2.√u)'dur.
Kareköklü İfadelerin Türevi Nedir ? √u'nun türevi u'/(2.√u)'dur.
( u ) ′ = 2. u u ′
d x d ( u ) = 2. u u ′
Kareköklü İfadelerin Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( u ( x ) ) ′ = h → 0 lim h u ( x + h ) − u ( x ) ( u ( x ) ) ′ = h → 0 lim h . ( u ( x + h ) + u ( x ) ) ( u ( x + h ) − u ( x ) ) . ( u ( x + h ) + u ( x ) ) ( a + b ) . ( a − b ) = a 2 − b 2 ( u ( x ) ) ′ = h → 0 lim h . ( u ( x + h ) + u ( x ) ) [ u ( x + h ) ] 2 − [ u ( x ) ] 2 ( u ( x ) ) ′ = h → 0 lim h . ( u ( x + h ) + u ( x ) ) u ( x + h ) − u ( x ) ( u ( x ) ) ′ = h → 0 lim [ h u ( x + h ) − u ( x ) . u ( x + h ) + u ( x ) 1 ] ( u ( x ) ) ′ = h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim u ( x + h ) + u ( x ) 1 ( u ( x ) ) ′ = u ′ ( x ) . u ( x + 0 ) + u ( x ) 1
( u ( x ) ) ′ = u ′ ( x ) . u ( x ) + u ( x ) 1
( u ( x ) ) ′ = u ′ ( x ) . 2. u ( x ) 1
( u ( x ) ) ′ = 2. u ( x ) u ′ ( x )
u ( x ) = u
u ′ ( x ) = u ′
( u ) ′ = 2. u u ′
2. Yol y = u ( x )
y 2 = ( u ( x ) ) 2
y 2 = u ( x )
( y 2 ) ′ = u ′ ( x )
( u n ) ′ = n . ( u ) n − 1 . u ′
2. y . y ′ = u ′ ( x )
y ′ = 2. y u ′ ( x )
y ′ = 2. u ( x ) u ′ ( x )
( u ( x ) ) ′ = 2. u ( x ) u ′ ( x )
u ( x ) = u
u ′ ( x ) = u ′
( u ) ′ = 2. u u ′
3. Yol u ( x ) = [ u ( x ) ] 2 1
l n u ( x ) = l n [ u ( x ) ] 2 1
l n u ( x ) = 2 1 . l n u ( x )
( l n u ( x ) ) ′ = [ 2 1 . l n u ( x ) ] ′
( l n u ) ′ = u u ′
u ( x ) ( u ( x ) ) ′ = 2 1 . u ( x ) u ′ ( x )
u ( x ) ( u ( x ) ) ′ = 2. u ( x ) u ′ ( x )
u ( x ) u ( x ) ( u ( x ) ) ′ = u ( x ) 2. u ( x ) u ( x ) u ′ ( x )
( u ( x ) ) ′ = 2. u ( x ) u ′ ( x )
u ( x ) = u
u ′ ( x ) = u ′
( u ) ′ = 2. u u ′