¿ CuÔl es la Integral de Tan x ? La integral de tan x es -ln |cos x|
ā« t an x d x = ā l n ⣠cos x ⣠+ c = l n ⣠sec x ⣠+ c
Encontrar la Integral de Tan x MƩtodo 1
ā« t an x d x = ? t an x = cos x s in x ā ā
ā« t an x d x = ā« cos x s in x ā d x
cos x = u
d ( cos x ) = d u
( cos x ) ā² d x = d u
( cos x ) ā² = ā s in x ā
ā s in x d x = d u
s in x d x = ā d u
ā« t an x d x = ā« u ā d u ā
ā« t an x d x = ā ā« u d u ā
ā« x d x ā = l n ⣠x ⣠+ c ā
ā« t an x d x = ā l n ⣠u ⣠+ c
ā« t an x d x = ā l n ⣠cos x ⣠+ c
ā« t an x d x = l n ⣠co s ā 1 x ⣠+ c
ā« t an x d x = l n ⣠cos x 1 ā ⣠+ c
cos x 1 ā = sec x ā
⫠t an x d x = l n ⣠sec x ⣠+ c
MƩtodo 2
ā« t an x d x = ā« sec x sec x ā . t an x d x
ā« t an x d x = ā« sec x sec x . t an x d x ā sec x = u d ( sec x ) = d u ( sec x ) ā² d x = d u ( sec x ) ā² = sec x . t an x ā sec x . t an x d x = d u
ā« t an x d x = ā« u d u ā
⫠t an x d x = l n ⣠u ⣠+ c
⫠t an x d x = l n ⣠sec x ⣠+ c
MƩtodo 3
En el triƔngulo rectƔngulo ABC de arriba;
t an x = 1 u ā = u
ā« t an x d x = ?
t an x = u
d ( t an x ) = d u
( t an x ) ā² d x = d u
( t an x ) ā² = 1 + t a n 2 x ā
( 1 + t a n 2 x ) d x = d u
( 1 + u 2 ) d x = d u
d x = 1 + u 2 d u ā
ā« t an x d x = ā« u . 1 + u 2 d u ā
ā« t an x d x = ā« 1 + u 2 u d u ā
ā« t an x d x = ā« 2. ( 1 + u 2 ) 2. u d u ā
ā« t an x d x = 2 1 ā ā« 1 + u 2 2 u d u ā
1 + u 2 = v
d ( 1 + u 2 ) = d v
( 1 + u 2 ) ā² d u = d v
2 u d u = d v
ā« t an x d x = 2 1 ā ā« v d v ā
ā« t an x d x = 2 1 ā l n ⣠v ⣠+ c
ā« t an x d x = l n ⣠v 2 1 ā ⣠+ c
ā« t an x d x = l n ⣠v ā ⣠+ c
ā« t an x d x = l n ⣠1 + u 2 ā ⣠+ c
En el triƔngulo rectƔngulo ABC de arriba;
sec x = 1 1 + u 2 ā ā = 1 + u 2 ā
⫠t an x d x = l n ⣠sec x ⣠+ c