La integral de cot x es ln |sin x|+c.
¿ CuÔl es la Integral de Cot x ? La integral de cot x es ln |sin x|+c.
⫠co t x d x = l n ⣠s in x ⣠+ c
ā« co t x d x = ā l n ⣠csc x ⣠+ c
Encontrar la Integral de Cot x MƩtodo 1
ā« co t x d x = ? co t x = s in x cos x ā ā ā« co t x d x = ā« s in x cos x ā d x
ā« co t x d x = ā« s in x cos x d x ā
s in x = u
d ( s in x ) = d ( u )
d [ f ( x )] = f ā² ( x ) d x ā ( s in x ) ā² d x = d u
( s in x ) ā² = cos x ā cos x d x = d u
ā« co t x d x = ā« u d u ā
ā« x d x ā = l n ⣠x ⣠+ c ā ā« co t x d x = l n ⣠u ⣠+ c
⫠co t x d x = l n ⣠s in x ⣠+ c
MƩtodo 2
ā« co t x d x = ā« csc x csc x . co t x d x ā
csc x = u d ( csc x ) = d ( u ) ( csc x ) ā² d x = d u ( csc x ) ā² = ā csc x . co t x ā ā csc x . co t x d x = d u
csc x . co t x d x = ā d u ā« co t x d x = ā« u ā d u ā ā« co t x d x = ā ā« u d u ā ā« co t x d x = ā l n ⣠u ⣠+ c
ā« co t x d x = ā l n ⣠csc x ⣠+ c
MƩtodo 3
ā« co t x d x = ? co t x = u d ( co t x ) = d ( u )
( co t x ) ā² d x = d u
( co t x ) ā² = ā ( 1 + co t 2 x ) ā
ā ( 1 + co t 2 x ) d x = d u
ā ( 1 + u 2 ) d x = d u
d x = ā 1 + u 2 d u ā
ā« co t x d x = ā« u 1 + u 2 ā d u ā
ā« co t x d x = ā« 1 + u 2 ā u d u ā
1 + u 2 = v
d ( 1 + u 2 ) = d ( v )
( 1 + u 2 ) ā² d u = d v
2 ā 2 ā u d u ā = 2 d v ā
u d u = 2 d v ā
ā« co t x d x = ā« v ā 2 d v ā ā
ā« co t x d x = ā« v ā 2 1 ā d v ā
ā« co t x d x = ā 2 1 ā ā« v d v ā
ā« co t x d x = ā 2 1 ā l n ⣠v ⣠+ c
ā« co t x d x = l n ⣠v ⣠ā 2 1 ā + c
ā« co t x d x = l n ⣠v ā 2 1 ā ⣠+ c
ā« co t x d x = l n ⣠v 2 1 ā 1 ā ⣠+ c
ā« co t x d x = l n ⣠v ā 1 ā ⣠+ c
ā« co t x d x = l n ⣠1 + u 2 ā 1 ā ⣠+ c
co t x = u
s in x = 1 + u 2 ā 1 ā
⫠co t x d x = l n ⣠s in x ⣠+ c