proof of derivative of square root functions f ( x ) = g ( x ) ⇒ f ′ ( x ) = g ( x ) g ′ ( x ) ( g ( x ) > 0 ) . We can prove why the derivative of g ( x ) is equal to 2 g ( x ) g ′ ( x ) in several ways, some of which we will show below.
Way 1 f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( g ( x ) ) ′ = h → 0 lim h g ( x + h ) − g ( x )
( g ( x ) ) ′ = h → 0 lim h g ( x + h ) − g ( x ) . g ( x + h ) + g ( x ) g ( x + h ) + g ( x )
( g ( x ) ) ′ = h → 0 lim h . ( g ( x + h ) + g ( x ) ) ( g ( x + h ) − g ( x ) ) . ( g ( x + h ) + g ( x ) )
a 2 − b 2 = ( a + b ) . ( a − b )
( g ( x ) ) ′ = h → 0 lim h ( g ( x + h ) + g ( x ) ) ( g ( x + h ) ) 2 − ( g ( x ) ) 2
( g ( x ) ) ′ = h → 0 lim h . ( g ( x + h ) + g ( x ) ) [ g ( x + h ) ] 2 − [ g ( x ) ] 2
( g ( x ) ) ′ = h → 0 lim h . ( g ( x + h ) + g ( x ) ) g ( x + h ) − g ( x )
( g ( x ) ) ′ = h → 0 lim h g ( x + h ) − g ( x ) . g ( x + h ) + g ( x ) 1
( g ( x ) ) ′ = h → 0 lim h g ( x + h ) − g ( x ) . h → 0 lim g ( x + h ) + g ( x ) 1
( g ( x ) ) ′ = g ′ ( x ) . h → 0 lim g ( x + h ) + g ( x ) 1
( g ( x ) ) ′ = g ′ ( x ) . g ( x + 0 ) + g ( x ) 1
( g ( x ) ) ′ = g ′ ( x ) . g ( x ) + g ( x ) 1
( g ( x ) ) ′ = g ′ ( x ) . 2. g ( x ) 1
( g ( x ) ) ′ = 2. g ( x ) g ′ ( x )
Way 2 f ( x ) = g ( x )
[ f ( x ) ] 2 = ( g ( x ) ) 2
[ f ( x ) ] 2 = [ g ( x ) ] 2
[ f ( x ) ] 2 = g ( x )
{[ f ( x ) ] 2 } ′ = [ g ( x ) ] ′
f ( x ) = [ g ( x ) ] n ⇒ f ′ ( x ) = n . [ g ( x ) ] n − 1 . g ′ ( x )
2. [ f ( x ) ] 2 − 1 . f ( x ) ′ = g ′ ( x )
2. f ( x ) . f ( x ) ′ = g ′ ( x )
f ′ ( x ) = 2. f ( x ) g ′ ( x )
f ′ ( x ) = 2. g ( x ) g ′ ( x )
Way 3 g ( x ) = [ g ( x ) ] 2 1
l n g ( x ) = l n [ g ( x ) ] 2 1
l n g ( x ) = 2 1 . l n g ( x )
( l n g ( x ) ) ′ = [ 2 1 . l n g ( x ) ] ′
( l n g ( x ) ) ′ = 2 1 . [ l n g ( x ) ] ′
f ( x ) = l n g ( x ) ⇒ f ′ ( x ) = g ( x ) g ′ ( x )
g ( x ) ( g ( x ) ) ′ = 2 1 . g ( x ) g ′ ( x )
g ( x ) ( g ( x ) ) ′ = 2. g ( x ) 1. g ′ ( x )
g ( x ) ( g ( x ) ) ′ = 2. g ( x ) g ′ ( x )
( g ( x ) ) ′ = g ( x ) . 2. g ( x ) g ′ ( x )
( g ( x ) ) ′ = 2. g ( x ) g ( x ) . g ′ ( x )
( g ( x ) ) ′ = 2. [ g ( x ) ] 2 g ( x ) . g ′ ( x )
( g ( x ) ) ′ = 2. g ( x ) . g ( x ) g ( x ) . g ′ ( x )
( g ( x ) ) ′ = 2. g ( x ) . g ( x ) g ( x ) . g ′ ( x )
( g ( x ) ) ′ = 2. g ( x ) g ′ ( x )