The derivative of sin u is u'.cos u.
What is the Derivative of Sin u ? The derivative of sin u is u'.cos u.
( s in u ) ′ = u ′ . cos u
d x d ( s in u ) = u ′ . cos u
Proof of the Derivative of Sin u Way 1 f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) [ s in u ( x ) ] ′ = h → 0 lim h s in u ( x + h ) − s in u ( x )
s in p − s in q = 2. s in 2 p − q . cos 2 p + q [ s in u ( x ) ] ′ = h → 0 lim h 2. s in 2 u ( x + h ) − u ( x ) . cos 2 u ( x + h ) + u ( x ) [ s in u ( x ) ] ′ = h → 0 lim h . 2 1 s in 2 u ( x + h ) − u ( x ) . cos 2 u ( x + h ) + u ( x ) [ s in u ( x ) ] ′ = h → 0 lim h . 2 1 . [ u ( x + h ) − u ( x )] [ u ( x + h ) − u ( x )] . s in 2 u ( x + h ) − u ( x ) . cos 2 u ( x + h ) + u ( x ) [ s in u ( x ) ] ′ = h → 0 lim h . 2 u ( x + h ) − u ( x ) [ u ( x + h ) − u ( x )] . s in 2 u ( x + h ) − u ( x ) . cos 2 u ( x + h ) + u ( x ) [ s in u ( x ) ] ′ = h → 0 lim [ h u ( x + h ) − u ( x ) . 2 u ( x + h ) − u ( x ) s in 2 u ( x + h ) − u ( x ) . cos 2 u ( x + h ) + u ( x ) ] [ s in u ( x ) ] ′ = h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim 2 u ( x + h ) − u ( x ) s in 2 u ( x + h ) − u ( x ) . h → 0 lim cos 2 u ( x + h ) + u ( x ) h → 0 [ 2 u ( x + h ) − u ( x ) = h ]
[ s in u ( x ) ] ′ = h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim h s in h . h → 0 lim cos 2 u ( x + h ) + u ( x )
t → 0 l i m t s in t = 1
[ s in u ( x ) ] ′ = u ′ ( x ) .1. cos 2 u ( x + 0 ) + u ( x )
[ s in u ( x ) ] ′ = u ′ ( x ) .1. cos 2 u ( x ) + u ( x )
[ s in u ( x ) ] ′ = u ′ ( x ) .1. cos 2 2 . u ( x )
[ s in u ( x ) ] ′ = u ′ ( x ) .1. cos u ( x )
[ s in u ( x ) ] ′ = u ′ ( x ) . cos u ( x )
u ( x ) = u
u ′ ( x ) = u ′
( s in u ) ′ = u ′ . cos u
Way 2 s in u ( x ) = u ( x ) − 3 ! [ u ( x ) ] 3 + 5 ! [ u ( x ) ] 5 − 7 ! [ u ( x ) ] 7 + 9 ! [ u ( x ) ] 9 − ...
cos u ( x ) = 1 − 2 ! [ u ( x ) ] 2 + 4 ! [ u ( x ) ] 4 − 6 ! [ u ( x ) ] 6 + 8 ! [ u ( x ) ] 8 − ...
u ( x ) = u
u ′ ( x ) = u ′
s in u = u − 3 ! u 3 + 5 ! u 5 − 7 ! u 7 + 9 ! u 9 − ...
( s in u ) ′ = ( u − 3 ! u 3 + 5 ! u 5 − 7 ! u 7 + 9 ! u 9 − ... ) ′
( s in u ) ′ = u ′ − ( 3 ! u 3 ) ′ + ( 5 ! u 5 ) ′ − ( 7 ! u 7 ) ′ + ( 9 ! u 9 ) ′ − ...
( s in u ) ′ = u ′ − 3 ! ( u 3 ) ′ + 5 ! ( u 5 ) ′ − 7 ! ( u 7 ) ′ + 9 ! ( u 9 ) ′ − ...
( s in u ) ′ = u ′ − 3 ! 3. u 2 . u ′ + 5 ! 5. u 4 . u ′ − 7 ! 7. u 6 . u ′ + 9 ! 9. u 8 . u ′ − ...
( s in u ) ′ = u ′ − 3 .2 ! 3 . u 2 . u ′ + 5 .4 ! 5 . u 4 . u ′ − 7 .6 ! 7 . u 6 . u ′ + 9 .8 ! 9 . u 8 . u ′ − ...
( s in u ) ′ = u ′ − 2 ! u 2 . u ′ + 4 ! u 4 . u ′ − 6 ! u 6 . u ′ + 8 ! u 8 . u ′ − ...
( s in u ) ′ = u ′ . ( 1 − 2 ! u 2 + 4 ! u 4 − 6 ! u 6 + 8 ! u 8 − ... )
( s in u ) ′ = u ′ . cos u
Question f ( x ) = s in ( x 2 − 5 x + 3 ) ⇒ f ′ ( x ) = ?
Answer ( s in u ) ′ = u ′ . cos u
[ s in ( x 2 − 5 x + 3 ) ] ′ = ( x 2 − 5 x + 3 ) ′ . cos ( x 2 − 5 x + 3 )
[ s in ( x 2 − 5 x + 3 ) ] ′ = ( 2 x − 5 ) . cos ( x 2 − 5 x + 3 )