The derivative of cos u is -u'.sin u.
What is the Derivative of Cos u ? The derivative of cos u is -u'.sin u.
( cos u ) ′ = − u ′ . s in u
d x d ( cos u ) = − u ′ . s in u
Proof of the Derivative of Cos u Way 1 f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) [ cos u ( x ) ] ′ = h → 0 lim h cos u ( x + h ) − cos u ( x ) cos p − cos q = − 2. s in 2 p + q . s in 2 p − q [ cos u ( x ) ] ′ = h → 0 lim h − 2. s in 2 u ( x + h ) + u ( x ) . s in 2 u ( x + h ) − u ( x ) [ cos u ( x ) ] ′ = h → 0 lim h . 2 1 − s in 2 u ( x + h ) + u ( x ) . s in 2 u ( x + h ) − u ( x ) [ cos u ( x ) ] ′ = h → 0 lim h . 2 1 . [ u ( x + h ) − u ( x )] − [ u ( x + h ) − u ( x )] . s in 2 u ( x + h ) + u ( x ) . s in 2 u ( x + h ) − u ( x ) [ cos u ( x ) ] ′ = h → 0 lim h . 2 u ( x + h ) − u ( x ) − [ u ( x + h ) − u ( x )] . s in 2 u ( x + h ) + u ( x ) . s in 2 u ( x + h ) − u ( x ) [ cos u ( x ) ] ′ = − h → 0 lim h . 2 u ( x + h ) − u ( x ) [ u ( x + h ) − u ( x )] . s in 2 u ( x + h ) + u ( x ) . s in 2 u ( x + h ) − u ( x ) [ cos u ( x ) ] ′ = − h → 0 lim [ h u ( x + h ) − u ( x ) . 2 u ( x + h ) − u ( x ) s in 2 u ( x + h ) − u ( x ) . s in 2 u ( x + h ) + u ( x ) ] [ cos u ( x ) ] ′ = − h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim 2 u ( x + h ) − u ( x ) s in 2 u ( x + h ) − u ( x ) . h → 0 lim s in 2 u ( x + h ) + u ( x ) h → 0 [ 2 u ( x + h ) − u ( x ) = h ]
[ cos u ( x ) ] ′ = − h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim h s in h . h → 0 lim s in 2 u ( x + h ) + u ( x )
t → 0 l i m t s in t = 1
[ cos u ( x ) ] ′ = − u ′ ( x ) .1. s in 2 u ( x + 0 ) + u ( x )
[ cos u ( x ) ] ′ = − u ′ ( x ) .1. s in 2 u ( x ) + u ( x )
[ cos u ( x ) ] ′ = − u ′ ( x ) .1. s in 2 2 . u ( x )
[ cos u ( x ) ] ′ = − u ′ ( x ) .1. s in u ( x )
[ cos u ( x ) ] ′ = − u ′ ( x ) . s in u ( x )
u ( x ) = u
u ′ ( x ) = u ′
( cos u ) ′ = − u ′ . s in u
Way 2 s in u ( x ) = u ( x ) − 3 ! [ u ( x ) ] 3 + 5 ! [ u ( x ) ] 5 − 7 ! [ u ( x ) ] 7 + 9 ! [ u ( x ) ] 9 − ...
cos u ( x ) = 1 − 2 ! [ u ( x ) ] 2 + 4 ! [ u ( x ) ] 4 − 6 ! [ u ( x ) ] 6 + 8 ! [ u ( x ) ] 8 − ...
u ( x ) = u
u ′ ( x ) = u ′
cos u = 1 − 2 ! u 2 + 4 ! u 4 − 6 ! u 6 + 8 ! u 8 − ...
( cos u ) ′ = ( 1 − 2 ! u 2 + 4 ! u 4 − 6 ! u 6 + 8 ! u 8 − ... ) ′
( cos u ) ′ = ( 1 ) ′ − ( 2 ! u 2 ) ′ + ( 4 ! u 4 ) ′ − ( 6 ! u 6 ) ′ + ( 8 ! u 8 ) ′ − ...
( cos u ) ′ = ( 1 ) ′ − 2 ! ( u 2 ) ′ + 4 ! ( u 4 ) ′ − 6 ! ( u 6 ) ′ + 8 ! ( u 8 ) ′ − ...
( cos u ) ′ = 0 − 2 ! 2. u . u ′ + 4 ! 4. u 3 . u ′ − 6 ! 6. u 5 . u ′ + 8 ! 8. u 7 . u ′ − ...
( cos u ) ′ = − 2 ! 2. u . u ′ + 4 ! 4. u 3 . u ′ − 6 ! 6. u 5 . u ′ + 8 ! 8. u 7 . u ′ − ...
( cos u ) ′ = − 2 .1 ! 2 . u . u ′ + 4 .3 ! 4 . u 3 . u ′ − 6 .5 ! 6 . u 5 . u ′ + 8 .7 ! 8 . u 7 . u ′ − ...
( cos u ) ′ = − 1 ! u . u ′ + 3 ! u 3 . u ′ − 5 ! u 5 . u ′ + 7 ! u 7 . u ′ − ...
( cos u ) ′ = − 1 u . u ′ + 3 ! u 3 . u ′ − 5 ! u 5 . u ′ + 7 ! u 7 . u ′ − ...
( cos u ) ′ = − u . u ′ + 3 ! u 3 . u ′ − 5 ! u 5 . u ′ + 7 ! u 7 . u ′ − ...
( cos u ) ′ = − u ′ . ( u − 3 ! u 3 + 5 ! u 5 − 7 ! u 7 + ... )
( cos u ) ′ = − u ′ . s in u
Question f ( x ) = cos ( − 2 x 3 + 4 x ) ⇒ f ′ ( x ) = ?
Answer ( cos u ) ′ = − u ′ . s in u
[ cos ( − 2 x 3 + 4 x ) ] ′ = − ( − 2 x 3 + 4 x ) ′ . s in ( − 2 x 3 + 4 x )
[ cos ( − 2 x 3 + 4 x ) ] ′ = − ( − 2.3. x 2 + 4 ) . s in ( − 2 x 3 + 4 x )
[ cos ( − 2 x 3 + 4 x ) ] ′ = − ( − 6 x 2 + 4 ) . s in ( − 2 x 3 + 4 x )
[ cos ( − 2 x 3 + 4 x ) ] ′ = ( 6 x 2 − 4 ) . s in ( − 2 x 3 + 4 x )