
What is the Derivative of Arcsin x ?
The derivative of arcsin x is 1/√1-x².
(arcsin x)′=1−x21
dxd(arcsin x)=1−x21
Proof of the Derivative of Arcsin x
Way 1
f′ (x)=h→0limhf (x+h)−f (x)
(arcsin x)′=h→0limharcsin (x+h)−arcsin x
arcsin (x+h)=U, sin U=x+h
arcsin x=V, sin V=x
sin U−sin V=x+h−x
sin U−sin V=h
h→0, sin U−sin V→0, sin U→sin V, U→V
(arcsin x)′=U→Vlimsin U−sin VU−V
sin p−sin q=2.sin 2p−q.cos 2p+q
(arcsin x)′=U→Vlim2.sin 2U−V.cos 2U+VU−V
(arcsin x)′=U→Vlimsin 2U−V.cos 2U+V21.(U−V)
(arcsin x)′=U→Vlimsin 2U−V.cos 2U+V2U−V
(arcsin x)′=U→Vlim(sin 2U−V2U−V.cos 2U+V1)
(arcsin x)′=U→Vlimsin 2U−V2U−V.U→Vlimcos 2U+V1
U→V , 2U−V→0
(arcsin x)′=2U−V→0limsin 2U−V2U−V.U→Vlimcos 2U+V1
t→0limsin tt=1
(arcsin x)′=1.cos 2V+V1
(arcsin x)′=cos 2V+V1
(arcsin x)′=cos 22V1
(arcsin x)′=cos V1

sin V=x
cos V=1−x2
(arcsin x)′=1−x21
Way 2
y=arcsin x
sin y=x
(sin y)′=(x)′
(sin u)′=u′.cos u
y′.cos y=1
y′=cos y1

sin y=x
cos y=1−x2
y′=1−x21