The derivative of arccot x is -1/1+x².
What is the Derivative of Arccot x ? The derivative of arccot x is -1/1+x².
( a rcco t x ) ′ = − 1 + x 2 1
d x d ( a rcco t x ) = − 1 + x 2 1
Proof of the Derivative of Arccot x Way 1 f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x )
( a rcco t x ) ′ = h → 0 lim h a rcco t ( x + h ) − a rcco t x
a rcco t ( x + h ) = U , co t U = x + h a rcco t x = V , co t V = x co t U − co t V = x + h − x co t U − co t V = h h → 0 , co t U − co t V → 0 , co t U → co t V , U → V ( a rcco t x ) ′ = U → V lim co t U − co t V U − V co t p − co t q = − s in p . s in q s in ( p − q ) ( a rcco t x ) ′ = U → V lim − s in U . s in V s in ( U − V ) U − V ( a rcco t x ) ′ = U → V lim [ − s in ( U − V ) ( U − V ) . s in U . s in V ] ( a rcco t x ) ′ = − U → V lim [ s in ( U − V ) ( U − V ) . s in U . s in V ] ( a rcco t x ) ′ = − U → V lim [ s in ( U − V ) U − V . s in U . s in V ] ( a rcco t x ) ′ = − U → V lim s in ( U − V ) U − V . U → V lim s in U . U → V lim s in V U → V , U − V → 0 ( a rcco t x ) ′ = − U − V → 0 lim s in ( U − V ) U − V . U → V lim s in U . U → V lim s in V t → 0 l i m s in t t = 1
( a rcco t x ) ′ = − 1. s in V . s in V
( a rcco t x ) ′ = − s i n 2 V
co t V = x
s in V = 1 + x 2 1
( a rcco t x ) ′ = − ( 1 + x 2 1 ) 2
( a rcco t x ) ′ = − 1 + x 2 1
Way 2 y = a rcco t x
co t y = x
( co t y ) ′ = ( x ) ′
( co t u ) ′ = − u ′ . ( 1 + co t 2 u )
− y ′ . ( 1 + co t 2 y ) = 1
y ′ = − 1 + co t 2 y 1
y ′ = − 1 + x 2 1