
What is the Derivative of Arccos x ?
The derivative of arccos x is -1/√1-x².
(arccos x)′=−1−x21
dxd(arccos x)=−1−x21
Proof of the Derivative of Arccos x
Way 1
f′ (x)=h→0limhf (x+h)−f (x)
(arccos x)′=h→0limharccos (x+h)−arccos x
arccos (x+h)=U, cos U=x+h
arccos x=V, cos V=x
cos U−cos V=x+h−x
cos U−cos V=h
h→0, cos U−cos V→0, cos U→cos V, U→V
(arccos x)′=U→Vlimcos U−cos VU−V
cos p−cos q=−2.sin 2p+q.sin 2p−q
(arccos x)′=U→Vlim−2.sin 2U+V.sin 2U−VU−V
(arccos x)′=U→Vlimsin 2U+V.sin 2U−V−21.(U−V)
(arccos x)′=U→Vlimsin 2U+V.sin 2U−V−2U−V
(arccos x)′=−U→Vlimsin 2U+V.sin 2U−V2U−V
(arccos x)′=−U→Vlim(sin 2U−V2U−V.sin 2U+V1)
(arccos x)′=−U→Vlimsin 2U−V2U−V.U→Vlimsin 2U+V1
U→V , 2U−V→0
(arccos x)′=−2U−V→0limsin 2U−V2U−V.U→Vlimsin 2U+V1
t→0limsin tt=1
(arccos x)′=−1.sin 2V+V1
(arccos x)′=−sin 2V+V1
(arccos x)′=−sin 22V1
(arccos x)′=−sin V1
(arccos x)′=−sin V1

cos V=x
sin V=1−x2
(arccos x)′=−1−x21
Way 2
y=arccos x
cos y=x
(cos y)′=(x)′
(cos u)′=−u′.sin u
−y′.sin y=1
y′=−sin y1

cos y=x
sin y=1−x2
y′=−1−x21