La derivada de tan u es u'.(1+tan² u).
¿ CuÔl es la Derivada de Tan u ? La derivada de tan u es u'.(1+tan² u).
( t an u ) ā² = u ā² . ( 1 + t a n 2 u )
d x d ā ( t an u ) = u ā² . ( 1 + t a n 2 u )
Prueba de la Derivada de Tan u f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā [ t an u ( x ) ] ā² = h ā 0 lim ā h t an u ( x + h ) ā t an u ( x ) ā
t an x = cos x s in x ā ā
[ t an u ( x ) ] ā² = h ā 0 lim ā h cos u ( x + h ) s in u ( x + h ) ā ā cos u ( x ) s in u ( x ) ā ā
[ t an u ( x ) ] ā² = h ā 0 lim ā h cos u ( x ) . cos u ( x + h ) s in u ( x + h ) . cos u ( x ) ā cos u ( x + h ) . s in u ( x ) ā ā
[ t an u ( x ) ] ā² = h ā 0 lim ā [ h 1 ā . cos u ( x ) . cos u ( x + h ) s in u ( x + h ) . cos u ( x ) ā cos u ( x + h ) . s in u ( x ) ā ]
[ t an u ( x ) ] ā² = h ā 0 lim ā h . cos u ( x ) . cos u ( x + h ) s in u ( x + h ) . cos u ( x ) ā cos u ( x + h ) . s in u ( x ) ā
s in p . cos q ā cos p . s in q = s in ( p ā q ) ā
[ t an u ( x ) ] ā² = h ā 0 lim ā h . cos u ( x ) . cos u ( x + h ) s in [ u ( x + h ) ā u ( x )] ā
[ t an u ( x ) ] ā² = h ā 0 lim ā [ u ( x + h ) ā u ( x )] . h . cos u ( x ) . cos u ( x + h ) [ u ( x + h ) ā u ( x )] . s in [ u ( x + h ) ā u ( x )] ā
[ t an u ( x ) ] ā² = h ā 0 lim ā [ h u ( x + h ) ā u ( x ) ā . u ( x + h ) ā u ( x ) s in [ u ( x + h ) ā u ( x )] ā . cos u ( x ) . cos u ( x + h ) 1 ā ]
[ t an u ( x ) ] ā² = h ā 0 lim ā h u ( x + h ) ā u ( x ) ā . h ā 0 lim ā u ( x + h ) ā u ( x ) s in [ u ( x + h ) ā u ( x )] ā . h ā 0 lim ā cos u ( x ) . cos u ( x + h ) 1 ā
h ā 0 [ u ( x + h ) ā u ( x ) = h ]
[ t an u ( x ) ] ā² = h ā 0 lim ā h u ( x + h ) ā u ( x ) ā . h ā 0 lim ā h s in h ā . h ā 0 lim ā cos u ( x ) . cos u ( x + h ) 1 ā
t ā 0 l i m ā t s in t ā = 1 ā
[ t an u ( x ) ] ā² = u ā² ( x ) .1. cos u ( x ) . cos u ( x + 0 ) 1 ā
[ t an u ( x ) ] ā² = u ā² ( x ) .1. cos u ( x ) . cos u ( x ) 1 ā
[ t an u ( x ) ] ā² = co s 2 u ( x ) u ā² ( x ) .1.1 ā
[ t an u ( x ) ] ā² = co s 2 u ( x ) u ā² ( x ) ā
u ( x ) = u
u ā² ( x ) = u ā²
( t an u ) ā² = co s 2 u u ā² ā
( t an u ) ā² = u ā² . co s 2 u 1 ā
( t an u ) ā² = u ā² . ( cos u 1 ā ) 2
cos x 1 ā = sec x ā
( t an u ) ā² = u ā² . se c 2 u
( t an u ) ā² = u ā² . co s 2 u 1 ā
1 = co s 2 x + s i n 2 x ā
( t an u ) ā² = u ā² . co s 2 u co s 2 u + s i n 2 u ā
( t an u ) ā² = u ā² . ( co s 2 u co s 2 u ā + co s 2 u s i n 2 u ā )
( t an u ) ā² = u ā² . ( 1 + co s 2 u s i n 2 u ā )
( t an u ) ā² = u ā² . [ 1 + ( cos u s in u ā ) 2 ]
( t an u ) ā² = u ā² . ( 1 + t a n 2 u )
( t an u ) ā² = u ā² . ( 1 + t a n 2 u ) = co s 2 u u ā² ā = u ā² . se c 2 u ā
Pregunta f ( x ) = t an ( 2 x ā 7 ) ā f ā² ( x ) = ?
Respuesta ( t an u ) ā² = u ā² . ( 1 + t a n 2 u )
[ t an ( 2 x ā 7 ) ] ā² = ( 2 x ā 7 ) ā² . [ 1 + t a n 2 ( 2 x ā 7 )]
[ t an ( 2 x ā 7 ) ] ā² = 2. [ 1 + t a n 2 ( 2 x ā 7 )]
[ t an ( 2 x ā 7 ) ] ā² = 2.1 + 2. t a n 2 ( 2 x ā 7 )
[ t an ( 2 x ā 7 ) ] ā² = 2 + 2. t a n 2 ( 2 x ā 7 )