La derivada de csc x es -csc x.cot x.
¿ CuÔl es la Derivada de Csc x ? La derivada de csc x es -csc x.cot x.
( csc x ) ā² = ā csc x . co t x
d x d ā ( csc x ) = ā csc x . co t x
Prueba de la Derivada de Csc x MĆ©todo 1 f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā ( csc x ) ā² = h ā 0 lim ā h csc ( x + h ) ā csc x ā csc x = s in x 1 ā ā ( csc x ) ā² = h ā 0 lim ā h s in ( x + h ) 1 ā ā s in x 1 ā ā ( csc x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) s in x ā s in ( x + h ) ā ā ( csc x ) ā² = h ā 0 lim ā [ h 1 ā . s in x . s in ( x + h ) s in x ā s in ( x + h ) ā ] ( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) s in x ā s in ( x + h ) ā s in p ā s in q = 2. s in 2 p ā q ā . cos 2 p + q ā ā ( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. s in 2 x ā ( x + h ) ā . cos 2 x + x + h ā ā ( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. s in 2 x ā ā x ā ā h ā . cos 2 2 x + h ā ā ( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. s in 2 ā h ā . cos 2 2 x + h ā ā s in ( ā x ) = ā s in x ā
( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. ā s in 2 h ā . cos 2 2 x + h ā ā
( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. ā s in 2 h ā . cos 2 ā 2 ā . ( x + 2 h ā ) ā ā
( csc x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) 2. ā s in 2 h ā . cos ( x + 2 h ā ) ā
( csc x ) ā² = h ā 0 lim ā 2 1 ā . h . s in x . s in ( x + h ) ā s in 2 h ā . cos ( x + 2 h ā ) ā
( csc x ) ā² = h ā 0 lim ā 2 h ā . s in x . s in ( x + h ) ā s in 2 h ā . cos ( x + 2 h ā ) ā ( csc x ) ā² = h ā 0 lim ā [ 2 h ā ā s in 2 h ā ā . s in x . s in ( x + h ) cos ( x + 2 h ā ) ā ] ( csc x ) ā² = h ā 0 lim ā 2 h ā ā s in 2 h ā ā . h ā 0 lim ā s in x . s in ( x + h ) cos ( x + 2 h ā ) ā h ā 0 ( 2 h ā = h )
( csc x ) ā² = h ā 0 lim ā h ā s in h ā . h ā 0 lim ā s in x . s in ( x + h ) cos ( x + h ) ā
( csc x ) ā² = ā h ā 0 lim ā h s in h ā . h ā 0 lim ā s in x . s in ( x + h ) cos ( x + h ) ā
t ā 0 l i m ā t s in t ā = 1 ā
( csc x ) ā² = ā 1. s in x . s in ( x + 0 ) cos ( x + 0 ) ā
( csc x ) ā² = ā s in x . s in ( x + 0 ) cos ( x + 0 ) ā
( csc x ) ā² = ā s in x . s in x cos x ā
( csc x ) ā² = ā s in x . s in x 1. cos x ā
( csc x ) ā² = ā s in x 1 ā . s in x cos x ā
s in x 1 ā = csc x ā s in x cos x ā = co t x ā
( csc x ) ā² = ā csc x . co t x
MĆ©todo 2 csc x = s in x 1 ā
( csc x ) ā² = ( s in x 1 ā ) ā²
( v u ā ) ā² = v 2 u ā² . v ā v ā² . u ā ā
( csc x ) ā² = s i n 2 x ( 1 ) ā² . s in x ā ( s in x ) ā² .1 ā
( s in x ) ā² = cos x ā
( csc x ) ā² = s i n 2 x 0. s in x ā cos x .1 ā
( csc x ) ā² = s i n 2 x 0 ā cos x ā
( csc x ) ā² = s i n 2 x ā cos x ā
( csc x ) ā² = ā s i n 2 x cos x ā
( csc x ) ā² = ā s in x . s in x 1. cos x ā
( csc x ) ā² = ā s in x 1 ā . s in x cos x ā
( csc x ) ā² = ā csc x . co t x
MĆ©todo 3 csc x = s in x 1 ā
csc x = s i n ā 1 x
( csc x ) ā² = ( s i n ā 1 x ) ā²
( u n ) ā² = n . u n ā 1 . u ā² ā
( csc x ) ā² = ā 1. s i n ā 1 ā 1 x . ( s in x ) ā²
( csc x ) ā² = ā 1. s i n ā 2 x . cos x
( csc x ) ā² = ā s i n ā 2 x . cos x
( csc x ) ā² = ā s i n 2 x 1 ā . cos x
( csc x ) ā² = ā s i n 2 x cos x ā
( csc x ) ā² = ā s in x . s in x 1. cos x ā
( csc x ) ā² = ā s in x 1 ā . s in x cos x ā
( csc x ) ā² = ā csc x . co t x