
¿ Cuál es la Derivada de Arctan x ?
La derivada de arctan x es 1/1+x².
(arctan x)′=1+x21
dxd(arctan x)=1+x21
Prueba de la Derivada de Arctan x
Método 1
f′ (x)=h→0limhf (x+h)−f (x)
(arctan x)′=h→0limharctan (x+h)−arctan x
arctan (x+h)=U, tan U=x+h
arctan x=V, tan V=x
tan U−tan V=x+h−x
tan U−tan V=h
h→0, tan U−tan V→0, tan U→tan V, U→V
(arctan x)′=U→Vlimtan U−tan VU−V
tan p−tan q=cos p.cos qsin (p−q)
(arctan x)′=U→Vlimcos U.cos Vsin (U−V)U−V
(arctan x)′=U→Vlim [sin (U−V)(U−V).cos U.cos V]
(arctan x)′=U→Vlim [sin (U−V)U−V.cos U.cos V]
(arctan x)′=U→Vlimsin (U−V)U−V.U→Vlimcos U.U→Vlimcos V
U→V, U−V→0
(arctan x)′=U−V→0limsin (U−V)U−V.U→Vlimcos U.U→Vlimcos V
t→0limsin tt=1
(arctan x)′=1.cos V.cos V
(arctan x)′=cos2 V

tan V=x
cos V=1+x21
(arctan x)′=(1+x21)2
(arctan x)′=1+x21
Método 2
y=arctan x
tan y=x
(tan y)′=(x)′
(tan u)′=u′.(1+tan2 u)
y′.(1+tan2 y)=1
y′=1+tan2 y1
y′=1+x21