¿ Cuál es la Derivada de 1/Cos x ?
La derivada de 1/cos x es sec x.tan x.
(cos x1)′=sec x.tan x
dxd(cos x1)=sec x.tan x
Prueba de la Derivada de 1/Cos x
Método 1
f′ (x)=h→0limhf (x+h)−f (x)
(cos x1)′=h→0limhcos (x+h)1−cos x1
(cos x1)′=h→0limhcos x.cos (x+h)cos x−cos (x+h)
(cos x1)′=h→0lim [h1.cos x.cos (x+h)cos x−cos (x+h)]
(cos x1)′=h→0limh.cos x.cos (x+h)cos x−cos (x+h)
cos p−cos q=−2.sin 2p−q.sin 2p+q
(cos x1)′=h→0limh.cos x.cos (x+h)−2.sin 2x−(x+h).sin 2x+x+h
(cos x1)′=h→0limh.cos x.cos (x+h)−2.sin 2x−x−h.sin 22x+h
(cos x1)′=h→0limh.cos x.cos (x+h)−2.sin 2−h.sin 22x+h
sin (−x)=−sin x
(cos x1)′=h→0limh.cos x.cos (x+h)−2.−sin 2h.sin 22x+h
(cos x1)′=h→0limh.cos x.cos (x+h)2.sin 2h.sin 22x+h
(cos x1)′=h→0limh.cos x.cos (x+h)2.sin 2h.sin 22.(x+2h)
(cos x1)′=h→0limh.cos x.cos (x+h)2.sin 2h.sin (x+2h)
(cos x1)′=h→0lim21.h.cos x.cos (x+h)sin 2h.sin (x+2h)
(cos x1)′=h→0lim2h.cos x.cos (x+h)sin 2h.sin (x+2h)
(cos x1)′=h→0lim [2hsin 2h.cos x.cos (x+h)sin (x+2h)]
(cos x1)′=h→0lim2hsin 2h.h→0limcos x.cos (x+h)sin (x+2h)
h→0 (2h=h)
(cos x1)′=h→0limhsin h.h→0limcos x.cos (x+h)sin (x+h)
t→0limtsin t=1
(cos x1)′=1.cos x.cos (x+0)sin (x+0)
(cos x1)′=cos x.cos (x+0)sin (x+0)
(cos x1)′=cos x.cos xsin x
(cos x1)′=cos x.cos x1.sin x
(cos x1)′=cos x1.cos xsin x
cos x1=sec x cos xsin x=tan x
(cos x1)′=sec x.tan x
Método 2
(vu)′=v2u′.v−v′.u
(cos x1)′=cos2 x(1)′.cos x−(cos x)′.1
(cos x)′=−sin x
(cos x1)′=cos2 x0.cos x−(−sin x).1
(cos x1)′=cos2 x0+sin x
(cos x1)′=cos2 xsin x
(cos x1)′=cos x.cos x1.sin x
(cos x1)′=cos x1.cos xsin x
(cos x1)′=sec x.tan x
Método 3
cos x1=cos−1 x
(cos x1)′=(cos−1 x)′
(un)′=n.un−1.u′
(cos x1)′=−1.cos−1−1 x.(cos x)′
(cos x1)′=−1.cos−2 x.−sin x
(cos x1)′=cos−2 x.sin x
(cos x1)′=cos2 x1.sin x
(cos x1)′=cos2 xsin x
(cos x1)′=cos x.cos x1.sin x
(cos x1)′=cos x1.cos xsin x
(cos x1)′=sec x.tan x
Published Date:
January 12, 2025
Updated Date:
April 14, 2025