Csc x'in türevi -csc x.cot x'tir.
Csc x'in Türevi Nedir ? Csc x'in türevi -csc x.cot x'tir.
( csc x ) ′ = − csc x . co t x
d x d ( csc x ) = − csc x . co t x
Csc x'in Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( csc x ) ′ = h → 0 lim h csc ( x + h ) − csc x csc x = s in x 1 ( csc x ) ′ = h → 0 lim h s in ( x + h ) 1 − s in x 1 ( csc x ) ′ = h → 0 lim h s in x . s in ( x + h ) s in x − s in ( x + h ) ( csc x ) ′ = h → 0 lim [ h 1 . s in x . s in ( x + h ) s in x − s in ( x + h ) ] ( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) s in x − s in ( x + h ) s in p − s in q = 2. s in 2 p − q . cos 2 p + q ( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. s in 2 x − ( x + h ) . cos 2 x + x + h ( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. s in 2 x − x − h . cos 2 2 x + h ( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. s in 2 − h . cos 2 2 x + h s in ( − x ) = − s in x
( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. − s in 2 h . cos 2 2 x + h
( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. − s in 2 h . cos 2 2 . ( x + 2 h )
( csc x ) ′ = h → 0 lim h . s in x . s in ( x + h ) 2. − s in 2 h . cos ( x + 2 h )
( csc x ) ′ = h → 0 lim 2 1 . h . s in x . s in ( x + h ) − s in 2 h . cos ( x + 2 h )
( csc x ) ′ = h → 0 lim 2 h . s in x . s in ( x + h ) − s in 2 h . cos ( x + 2 h ) ( csc x ) ′ = h → 0 lim [ 2 h − s in 2 h . s in x . s in ( x + h ) cos ( x + 2 h ) ] ( csc x ) ′ = h → 0 lim 2 h − s in 2 h . h → 0 lim s in x . s in ( x + h ) cos ( x + 2 h ) h → 0 ( 2 h = h )
( csc x ) ′ = h → 0 lim h − s in h . h → 0 lim s in x . s in ( x + h ) cos ( x + h )
( csc x ) ′ = − h → 0 lim h s in h . h → 0 lim s in x . s in ( x + h ) cos ( x + h )
t → 0 l i m t s in t = 1
( csc x ) ′ = − 1. s in x . s in ( x + 0 ) cos ( x + 0 )
( csc x ) ′ = − s in x . s in ( x + 0 ) cos ( x + 0 )
( csc x ) ′ = − s in x . s in x cos x
( csc x ) ′ = − s in x . s in x 1. cos x
( csc x ) ′ = − s in x 1 . s in x cos x
s in x 1 = csc x s in x cos x = co t x
( csc x ) ′ = − csc x . co t x
2. Yol csc x = s in x 1
( csc x ) ′ = ( s in x 1 ) ′
( v u ) ′ = v 2 u ′ . v − v ′ . u
( csc x ) ′ = s i n 2 x ( 1 ) ′ . s in x − ( s in x ) ′ .1
( s in x ) ′ = cos x
( csc x ) ′ = s i n 2 x 0. s in x − cos x .1
( csc x ) ′ = s i n 2 x 0 − cos x
( csc x ) ′ = s i n 2 x − cos x
( csc x ) ′ = − s i n 2 x cos x
( csc x ) ′ = − s in x . s in x 1. cos x
( csc x ) ′ = − s in x 1 . s in x cos x
( csc x ) ′ = − csc x . co t x
3. Yol csc x = s in x 1
csc x = s i n − 1 x
( csc x ) ′ = ( s i n − 1 x ) ′
( u n ) ′ = n . u n − 1 . u ′
( csc x ) ′ = − 1. s i n − 1 − 1 x . ( s in x ) ′
( csc x ) ′ = − 1. s i n − 2 x . cos x
( csc x ) ′ = − s i n − 2 x . cos x
( csc x ) ′ = − s i n 2 x 1 . cos x
( csc x ) ′ = − s i n 2 x cos x
( csc x ) ′ = − s in x . s in x 1. cos x
( csc x ) ′ = − s in x 1 . s in x cos x
( csc x ) ′ = − csc x . co t x