Cot x'in türevi -(1+cot² x)'tir.
Cot x'in Türevi Nedir ? Cot x'in türevi -(1+cot² x)'tir.
( co t x ) ā² = ā ( 1 + co t 2 x )
d x d ā ( co t x ) = ā ( 1 + co t 2 x )
Cot x'in Türevinin İspatı 1. Yol f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā ( co t x ) ā² = h ā 0 lim ā h co t ( x + h ) ā co t x ā co t ( p + q ) = co t p + co t q co t p . co t q ā 1 ā ā ( co t x ) ā² = h ā 0 lim ā h co t x + co t h co t x . co t h ā 1 ā ā co t x ā ( co t x ) ā² = h ā 0 lim ā h co t x + co t h co t x . co t h ā 1 ā co t x . ( co t x + co t h ) ā ā ( co t x ) ā² = h ā 0 lim ā h co t x + co t h co t x . co t h ā 1 ā co t 2 x ā co t x . co t h ā ā ( co t x ) ā² = h ā 0 lim ā h co t x + co t h ā ( 1 + co t 2 x ) ā ā ( co t x ) ā² = h ā 0 lim ā [ h 1 ā . co t x + co t h ā ( 1 + co t 2 x ) ā ] ( co t x ) ā² = h ā 0 lim ā h . ( co t x + co t h ) ā ( 1 + co t 2 x ) ā ( co t x ) ā² = h ā 0 lim ā h . co t x + h . co t h ā ( 1 + co t 2 x ) ā ( co t x ) ā² = h ā 0 lim ā ( h . co t x + h . co t h ) ā ( 1 + co t 2 x ) ā ( co t x ) ā² = h ā 0 lim ā ( h . co t x ) + h ā 0 lim ā ( h . co t h ) ā ( 1 + co t 2 x ) ā ( co t x ) ā² = co t x . h ā 0 lim ā h + h ā 0 lim ā ( h . co t h ) ā ( 1 + co t 2 x ) ā
t ā 0 l i m ā ( t . co t t ) = 1 ā ( co t x ) ā² = co t x .0 + 1 ā ( 1 + co t 2 x ) ā
( co t x ) ā² = 0 + 1 ā ( 1 + co t 2 x ) ā
( co t x ) ā² = 1 ā ( 1 + co t 2 x ) ā
( co t x ) ā² = ā ( 1 + co t 2 x )
2. Yol f ā² ( x ) = h ā 0 lim ā h f ( x + h ) ā f ( x ) ā ( co t x ) ā² = h ā 0 lim ā h co t ( x + h ) ā co t x ā co t x = s in x cos x ā ā
( co t x ) ā² = h ā 0 lim ā h s in ( x + h ) cos ( x + h ) ā ā s in x cos x ā ā
( co t x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) s in x . cos ( x + h ) ā cos x . s in ( x + h ) ā ā
s in p . cos q ā cos p . s in q = s in ( p ā q ) ā
( co t x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) s in [ x ā ( x + h )] ā ā
( co t x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) s in ( x ā ā x ā ā h ) ā ā
( co t x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) s in ( ā h ) ā ā
s in ( ā x ) = ā s in x ā
( co t x ) ā² = h ā 0 lim ā h s in x . s in ( x + h ) ā s in h ā ā
( co t x ) ā² = h ā 0 lim ā [ h 1 ā . s in x . s in ( x + h ) ā s in h ā ]
( co t x ) ā² = h ā 0 lim ā h . s in x . s in ( x + h ) ā s in h ā
( co t x ) ā² = h ā 0 lim ā [ h ā s in h ā . s in x . s in ( x + h ) 1 ā ]
( co t x ) ā² = h ā 0 lim ā h ā s in h ā . h ā 0 lim ā s in x . s in ( x + h ) 1 ā
( co t x ) ā² = ā h ā 0 lim ā h s in h ā . h ā 0 lim ā s in x . s in ( x + h ) 1 ā
t ā 0 l i m ā t s in t ā = 1 ā
( co t x ) ā² = ā 1. s in x . s in ( x + 0 ) 1 ā
( co t x ) ā² = ā s in x . s in ( x + 0 ) 1 ā
( co t x ) ā² = ā s in x . s in x 1 ā
( co t x ) ā² = ā s i n 2 x 1 ā
3. Yol co t x = s in x cos x ā
( co t x ) ā² = ( s in x cos x ā ) ā²
( v u ā ) ā² = v 2 u ā² . v ā v ā² . u ā ā
( co t x ) ā² = s i n 2 x ( cos x ) ā² . sin x ā ( s in x ) ā² . cos x ā
( s in x ) ā² = cos x ā ( cos x ) ā² = ā s in x ā
( co t x ) ā² = s i n 2 x ā s in x . s in x ā cos x . cos x ā
( co t x ) ā² = s i n 2 x ā s i n 2 x ā co s 2 x ā
( co t x ) ā² = s i n 2 x ā ( s i n 2 x + co s 2 x ) ā
( co t x ) ā² = ā s i n 2 x s i n 2 x + co s 2 x ā
s i n 2 x + co s 2 x = 1 ā
( co t x ) ā² = ā s i n 2 x 1 ā
ā s i n 2 x 1 ā = ā ( s in x 1 ā ) 2
( co t x ) ā² = ā ( s in x 1 ā ) 2
s in x 1 ā = csc x ā
( co t x ) ā² = ā cs c 2 x
( co t x ) ā² = ā ( 1 + co t 2 x ) = ā s i n 2 x 1 ā = ā cs c 2 x ā