
What is the formula for Cot 2x ?
Cot 2x is equal to (Cot² x - 1)/2.Cot x.
Proof of Cot 2x's Formula

In the right triangle ABC above;
AC=1
AB=sinx
BC=cosx
AD=DC=a
BD=cosx−a'dır.
For triangle ABC;
(AB)2+(BC)2=(AC)2
sin2x+cos2x=12
sin2x+cos2x=1
For triangle ABD;
(AB)2+(BD)2=(AD)2
sin2x+(cosx−a)2=a2
sin2x+cos2x−2.cosx.a+a2=a2
sin2x+cos2x−2.cosx.a+a2−a2=0
1−2.cosx.a=0
−2.cosx.a=−1
−2.cosx−2.cosx.a=−2.cosx−1
a=2.cosx1
In the ABD triangle;
cot2x=ABBD=sinxcosx−a
cot2x=sinxcosx−2.cosx1
cot2x=sinx2.cosx2.cosx.cosx−1
cot2x=sinx2.cosx2.cos2x−1
cot2x=2.cosx.sinx2.cos2x−1
cot2x=2.sinx.cosx2.cos2x−(cos2x+sin2x)
cot2x=2.sinx.cosx2.cos2x−cos2x−sin2x
cot2x=2.sinx.cosxcos2x−sin2x
cot2x=2.sinx.cosxcos2x−2.sinx.cosxsin2x
cot2x=2.sinx.cosxcosx.cosx−2.sinx.cosxsinx.sinx
cot2x=21.sinxcosx−21.cosxsinx
cot2x=21.(sinxcosx−cosxsinx)
cotx=sinxcosx
cot2x=21.(cotx−cotx1)
cot2x=21.cotxcotx.cotx−1
cot2x=21.cotxcot2x−1
cot2x=2.cotxcot2x−1