Cos x'in İntegrali Nedir ?
Cos x'in integrali sin x'tir.
∫cos x dx=sin x+c
Cos x'in İntegralini Bulma
1. Yol
Yukarıdaki ABC dik üçgeninde;
sin x=1u=u
cos x=11−u2=1−u2
∫cos x dx= ?
cos x=1−u2
d(cos x)=d(1−u2)
(cos x)′ dx=(1−u2)′ du
(cos x)′=−sin x
f(x)=u(x)⇒f′(x)=2u(x)u′(x)
−sin x dx=21−u2(1−u2)′ du
−u dx=21−u2−2u du
dx=−2u1−u2−2u du
∫cos x dx=∫1−u2.1−u2du
∫cos x dx=u+c
∫cos x dx=sin x+c
2. Yol
sin x=x−3!x3+5!x5−7!x7+9!x9−...
cos x=1−2!x2+4!x4−6!x6+8!x8−...
∫cos x dx=∫(1−2!x2+4!x4−6!x6+8!x8−...) dx
∫cos x dx=(x−3.2!x3+5.4!x5−7.6!x7+9.8!x9−...)+c
∫cos x dx=(x−3!x3+5!x5−7!x7+9!x9−...)+c
c∈R,c=0⇒∫cos x dx=(x−3!x3+5!x5−7!x7+9!x9−...)+0
∫cos x dx=x−3!x3+5!x5−7!x7+9!x9−...
∫cos x dx=sin x