cos 2x = cos² x - sin² x = 2.cos² x - 1 = 1 - 2.sin² x.
What is the formula for Cos 2x ?
Cos 2x are equal to cos² x - sin² x, 2.cos² x - 1 or 1 - 2.sin² x.
Proof of Cos 2x's Formula
Way 1
In the above isosceles triangle ABC;
AB=AC=1
BD=DC=sinx
AD=cosx
BE=sin2x
AE=cos2x
EC=1ācos2x.
For right triangle BEC;
(sin2x)2+(1ācos2x)2=(2.sinx)2
sin22x+12ā2.1.cos2x+cos22x=4.sin2x
sin22x+1ā2.cos2x+cos22x=4.sin2x
sin22x+cos22x+1ā2.cos2x=4.sin2x
sin2x+cos2x=1ā
1+1ā2.cos2x=4.sin2x
2ā2.cos2x=4.sin2x
2.(1ācos2x)=4.sin2x
1ācos2x=2.sin2x
ācos2x=2.sin2xā1
cos2x=1ā2.sin2xā
cos2x=sin2x+cos2xā2.sin2x
cos2x=cos2x+sin2xā2.sin2x
cos2x=cos2xāsin2xā
sin2x=1ācos2xā
cos2x=cos2xā(1ācos2x)
cos2x=cos2xā1+cos2x
cos2x=cos2x+cos2xā1
cos2x=2.cos2xā1ā
Way 2
In the right triangle ABC above;
AC=1
AB=sinx
BC=cosx
AD=DC=a
BD=cosxāa'dır.
For triangle ABC;
(AB)2+(BC)2=(AC)2
sin2x+cos2x=12
sin2x+cos2x=1
For triangle ABD;
(AB)2+(BD)2=(AD)2
sin2x+(cosxāa)2=a2
sin2x+cos2xā2.cosx.a+a2=a2
sin2x+cos2xā2.cosx.a+a2āa2=0
1ā2.cosx.a=0
ā2.cosx.a=ā1
ā2.cosxāā2.cosxā.aā=ā2.cosxā1ā
a=2.cosx1ā
In triangle ABC;
cos2x=ADBDā=acosxāaā
cos2x=2.cosx1ācosxā2.cosx1āā
cos2x=2.cosx1ā2.cosx2.cosx.cosxā1āā
cos2x=2.cosx1ā2.cosx2.cos2xā1āā
cos2x=2.cos2xā1ā
cos2x=1āsin2xā
cos2x=2.(1āsin2x)ā1
cos2x=2ā2.sin2xā1
cos2x=2ā1ā2.sin2x
cos2x=1ā2.sin2xā
cos2x=sin2x+cos2xā2.sin2x
cos2x=cos2x+sin2xā2.sin2x
cos2x=cos2xāsin2xā
Way 3
Formulas used to find the trigonometric value of the sum or difference of two angles with known trigonometric values āāare called sum-difference formulas. We can find the value of the formula for cos 2x by using the following sum formula for cosine.
Found this insightful? Imagine your knowledge generating income. Contribute your articles to bylge.com and connect with readers while unlocking your earning potential.