1/Sin x'in İntegrali
Pow
1/Sin x'in İntegrali -ln |csc x+cot x|+c'dir.
1/Sin x'in İntegrali Nedir ?
1/Sin x'in İntegrali -ln |csc x+cot x|+c'dir.
ā«sin xdxā=āln ā£csc x+cot xā£+c
ā«sin xdxā=ln ā£csc xācot xā£+c
ā«sin xdxā=21ā.ln ā£1+cos x1ācos xāā£+c
ā«sin xdxā=ln ā£tan 2xāā£+c
1/Sin x'in İntegralini Bulma
sin x1ā=csc xā
ā«sin x1ā dx=ā«csc x dx
ā«sin xdxā=ā«csc x dx
ā«sin xdxā=ā«csc x+cot x(csc x+cot x).csc xā dx
ā«sin xdxā=ā«csc x+cot xcsc2 x+csc x.cot xā dx
csc x+cot x=u
d(csc x+cot x)=du
(csc x+cot x)ā² dx=du
(csc x)ā² dx+(cot x)ā² dx=du
(csc x)ā²=ācsc x.cot xā (cot x)ā²=ācsc2 xā
ācsc x.cot x dxācsc2 x dx=du
(ācsc x.cot xācsc2 x) dx=du
ā(csc x.cot x+csc2 x) dx=du
(csc x.cot x+csc2 x) dx=ādu
ā«sin xdxā=ā«uāduā
ā«sin xdxā=āā«uduā
ā«xdxā=ln ā£xā£+cā
ā«sin xdxā=āln ā£uā£+c
ā«sin xdxā=āln ā£csc x+cot xā£+cā
āln ā£csc x+cot xā£=ln ā£(csc x+cot x)ā1ā£
ā«sin xdxā=ln ā£(csc x+cot x)ā1ā£+c
ā«sin xdxā=ln ā£csc x+cot x1āā£+c
csc x=sin x1āā cot x=sin xcos xāā
ā«sin xdxā=ln ā£sin x1ā+sin xcos xā1āā£+c
ā«sin xdxā=ln ā£sin x1+cos xā1āā£+c
ā«sin xdxā=ln ā£1+cos xsin xāā£+c
ā«sin xdxā=ln ā£sin x.(1+cos x)sin x.sin xāā£+c
ā«sin xdxā=ln ā£sin x.(1+cos x)sin2 xāā£+c
sin2 x=1ācos2 xā
ā«sin xdxā=ln ā£sin x.(1+cos x)1ācos2 xāā£+c
ā«sin xdxā=ln ā£sin x.(1+cos x)ā(1ācos x).(1+cos x)āāā£+c
ā«sin xdxā=ln ā£sin x1ācos xāā£+c
ā«sin xdxā=ln ā£sin x1āāsin xcos xāā£+c
ā«sin xdxā=ln ā£csc xācot xā£+cā
csc xācot x=(csc xācot x1ā)ā1
ā«sin xdxā=ln ā£(csc xācot x1ā)ā1ā£+c
ā«sin xdxā=āln ā£csc xācot x1āā£+c
ā«sin xdxā=āln ā£sin x1āāsin xcos xā1āā£+c
ā«sin xdxā=āln ā£sin x1ācos xā1āā£+c
ā«sin xdxā=āln ā£1ācos xsin xāā£+c
sin x=1ācos2 xāā
ā«sin xdxā=āln ā£1ācos x1ācos2 xāāā£+c
ā«sin xdxā=āln ā£(1ācos x)2ā1ācos2 xāāā£+c
ā«sin xdxā=āln ā£(1ācos x)21ācos2 xāāā£+c
ā«sin xdxā=āln ā£(1ācos x)ā.(1ācos x)(1ācos x)ā.(1+cos x)āāā£+c
ā«sin xdxā=āln ā£(1ācos x1+cos xāā)ā£+c
ā«sin xdxā=ln ā£(1ācos x1+cos xāā)ā1ā£+c
ā«sin xdxā=ln ā£(1ācos x1+cos xā)ā1āā£+c
ā«sin xdxā=ln ā£1+cos x1ācos xāāā£+c
ā«sin xdxā=ln ā£(1+cos x1ācos xā)21āā£+c
ā«sin xdxā=21ā.ln ā£1+cos x1ācos xāā£+cā
cos 2x=2.cos2 xā1ā
ā«sin xdxā=21ā.ln ā£1+2.cos2 2xāā11ā(2.cos2 2xāā1)āā£+c
ā«sin xdxā=21ā.ln ā£1ā+2.cos2 2xāā1ā1ā2.cos2 2xā+1āā£+c
ā«sin xdxā=21ā.ln ā£2.cos2 2xā2ā2.cos2 2xāāā£+c
ā«sin xdxā=21ā.ln ā£2ā.cos2 2xā2ā.(1ācos2 2xā)āā£+c
ā«sin xdxā=21ā.ln ā£cos2 2xā1ācos2 2xāāā£+c
1ācos2 x=sin2 xā
ā«sin xdxā=21ā.ln ā£cos2 2xāsin2 2xāāā£+c
ā«sin xdxā=21ā.ln ā£(cos 2xāsin 2xāā)2ā£+c
ā«sin xdxā=2ā.2ā1ā.ln ā£cos 2xāsin 2xāāā£+c
ā«sin xdxā=ln ā£cos 2xāsin 2xāāā£+c
cos xsin xā=tan xā
ā«sin xdxā=ln ā£tan 2xāā£+cā
Share Your Expertise, Earn Rewards!
Found this insightful? Imagine your knowledge generating income. Contribute your articles to bylge.com and connect with readers while unlocking your earning potential.