1/Cos x'in İntegrali Nedir ?
∫cos x1 dx=ln ∣sec x+tan x∣+c=−ln ∣sec x−tan x∣+c=ln ∣1−sin x1+sin x∣+c
1/Cos x'in İntegralini Bulma
1. Yol
cos x1=sec x
∫cos xdx=∫sec x dx
∫cos xdx=∫sec x+tan xsec x.(sec x+tan x) dx
∫cos xdx=∫sec x+tan xsec2 x+sec x.tan x dx
sec x+tan x=u
d (sec x+tan x)=du
(sec x+tan x)′ dx=du
(sec x)′ dx+(tan x)′ dx=du
(sec x)′=sec x.tan x (tan x)′=1+tan2 x=cos2 x1=sec2 x
sec x.tan x dx+sec2 x dx=du
(sec x.tan x+sec2 x) dx=du
∫cos xdx=∫udu
∫xdx=ln ∣x∣+c
∫cos xdx=ln ∣u∣+c
∫cos xdx=ln ∣sec x+tan x∣+c
∫cos xdx=ln ∣sec x−tan x(sec x−tan x)(sec x+tan x)∣+c
∫cos xdx=ln ∣sec x−tan xsec2 x−tan2 x∣+c
sec x=cos x1 tan x=cos xsin x
∫cos xdx=ln ∣sec x−tan x(cos x1)2−(cos xsin x)2∣+c
∫cos xdx=ln ∣sec x−tan xcos2 x1−cos2 xsin2 x∣+c
∫cos xdx=ln ∣sec x−tan xcos2 x1−sin2 x∣+c
1−sin2 x=cos2 x
∫cos xdx=ln ∣sec x−tan xcos2 xcos2 x∣+c
∫cos xdx=ln ∣sec x−tan x1∣+c
∫cos xdx=ln ∣(sec x−tan x)−1∣+c
∫cos xdx=−ln ∣sec x−tan x∣+c
2. Yol
∫cos xdx=∫cos xcos x.cos x1 dx
∫cos xdx=∫cos x.cos xcos x.1 dx
∫cos xdx=∫cos2 xcos x dx
cos2 x=1−sin2 x
∫cos xdx=∫1−sin2 xcos x dx
sin x=u
d (sin x)=du
(sin x)′ dx=du
(sin x)′=cos x
cos x dx=du
∫cos xdx=∫1−u2du
∫cos xdx=∫(1−u).(1+u)du
(1−u).(1+u)1=1−uA+1+uB
(1−u).(1+u)1=(1−u).(1+u)A.(1+u)+B.(1−u)
(1−u).(1+u)1=(1−u).(1+u)A+Au+B−Bu
0.u+1=(A−B).u+(A+B)
A−B=0
A+B=1
A−B+A+B=0+1
2A=1
A=21
21+B=1
B=1−21=21
∫cos xdx=∫1−u1/2 du+∫1+u1/2 du
∫cos xdx=21∫1−udu+21∫1+udu
∫cos xdx=21(∫1−udu+∫1+udu)
∫a±xdx=±ln ∣a±x∣
∫cos xdx=21(−ln ∣1−u∣+ln ∣1+u∣)+c
∫cos xdx=21(ln ∣1+u∣−ln ∣1−u∣)+c
∫cos xdx=21ln ∣1−u1+u∣+c
∫cos xdx=ln ∣(1−u1+u)21∣+c
∫cos xdx=ln ∣1−u1+u∣+c
∫cos xdx=ln ∣1−sin x1+sin x∣+c
Published Date:
May 15, 2021
Updated Date:
December 29, 2024